PRECIPITOUSNESS IN FORCING EXTENSIONS

BY RICHARD LAVER'

ABSTRACT

It is shown that the precipitousness of ω_1 can persist in a variety of forcing extensions.

While the statement that there exists a cardinal carrying a precipitous ideal is equiconsistent with the statement that there exists a measurable cardinal, precipitous ideals can exist on nonmeasurable cardinals, for example, ω_1 can carry a precipitous ideal ([5]). Now if the GCH holds below a measurable then it holds at the measurable; similarly, if there is an \aleph_2 -saturated ideal on ω_1 and $2^{\aleph_0} = \aleph_1$ then $2^{\aleph_1} = \aleph_2$. But the existence of a precipitous ideal on ω_1 is not known to have any such combinatorial consequences; a precise question in this vein (much less inclusive questions are also open, see below) is whether it is consistent that for every poset \mathscr{P} , $V^{\mathscr{P}} \models$ "every regular uncountable cardinal carries a precipitous ideal". In this paper we study the preservation in forcing extensions of the existence of a precipitous ideal on ω_1 .

Some forcing extensions are known not to destroy the existence of a precipitous ideal on ω_1 , but in the model where the measurable cardinal of an L_U has been Levy collapsed to ω_1 , certain further extensions, which don't collapse ω_1 , contain no precipitous ideals on ω_1 . We study here what happens in the model V where a supercompact cardinal has been collapsed to ω_1 , and prove for a certain class $\mathscr A$ of posets that $\mathscr P \in \mathscr A$ implies $V^{\mathscr P} \models \omega_1$ carries a precipitous ideal. $\mathscr A$ is a subclass of the class of proper posets. One of the members of $\mathscr A$ is the poset for making the proper forcing axiom true; thus the existence of a precipitous ideal on ω_1 is consistent with the proper forcing axiom. Is it consistent that the existence of a precipitous ideal on ω_1 is preserved under

Received November 15, 1983 and in revised form December 15, 1983

^{&#}x27; Supported by an NSF grant. These results were presented to the 1980 Summer ASL meeting in Patras, Greece.

countably closed extensions? (Proper extensions? Extensions which don't collapse ω_1 ?)

After reviewing material on precipitous ideals and master conditions, the main result is proved. Then a limitation on those methods is given by another theorem, that over the model where a supercompact cardinal has been collapsed to ω_1 , there is a countably closed extension in which the natural master condition ideals are not precipitous.

We recall some notation and definitions. Let κ be an uncountable cardinal and let $\mathscr{I} \subseteq \mathscr{P}(\kappa)$ be a κ -ideal, i.e., \mathscr{I} is a κ -complete ideal, $\{\alpha\} \in \mathscr{I}$ for $\alpha < \kappa$, and $\kappa \not\in \mathscr{I}$. Let $\mathscr{I}^+ = \mathscr{P}(\kappa) - \mathscr{I}$. Let $\mathbb{I}_{\mathscr{I}}$ denote forcing with respect to the poset $(\mathscr{I}^+, \supseteq)$ and let $G_{\mathscr{I}}$ be the generic ultrafilter on $\mathscr{P}(\kappa) \cap V$ so obtained. In $V[G_{\mathscr{I}}]$, form the ultraproduct $V^{\kappa}/G_{\mathscr{I}}$, where V^{κ} is the class of functions $f: \kappa \to V$ with $f \in V$. Then \mathscr{I} is precipitous if and only if $\mathbb{I}_{\mathscr{I}} "V^{\kappa}/G_{\mathscr{I}}$ is well founded". This notion of generic ultraproduct, and the question of its well foundedness, are due to Solovay ([15]), who proved that if \mathscr{I} is κ^+ -saturated then \mathscr{I} is precipitous. Precipitousness was first studied for its own sake by Jech and Prikry (see [5]) who showed, by modifying deep methods of Kunen ([7]), that if κ carries a precipitous ideal then κ is measurable in an inner model.

Jech ([4]) showed that a game condition on \mathcal{I} invented by Galvin is equivalent to precipitousness. Specifically, players I and II alternately move to create a sequence $Y_0 \supseteq Y_1 \supseteq \cdots \supseteq Y_n \supseteq \cdots$ $(n < \omega)$, with each $Y_n \in \mathcal{I}^+$; player I wins just in case $\bigcap Y_n = \emptyset$. Then \mathcal{I} is precipitous if and only if player I does not have a winning strategy. Another game theoretic version, clearly equivalent to precipitousness (Hajnal and Shelah), is the following:

I
$$(X_0, f_0)$$
 (X_1, f_1) (X_2, f_2)
II Y_0 Y_1 \cdots

where $X_0 \supseteq Y_0 \supseteq X_1 \supseteq Y_1 \supseteq \cdots$, each $X_i, Y_i \in \mathcal{I}^+$, $f_i : X_i \to \text{Ord}$, and $f_{i+1}(\alpha) < f_i(\alpha)$ for all $\alpha \in X_{i+1}$. Player I wins just in case the game continues for ω moves. Then \mathcal{I} is precipitous if and only if player II has a winning strategy.

Say that κ is precipitous if there exists a precipitous κ -ideal. Mitchell ([5]) proved a converse to Jech and Prikry's result: if a measurable cardinal κ is Levy collapsed to ω_1 , then in the extension $\kappa = \omega_1$ is precipitous. Thus, consider the following question. Let \mathcal{L}^{κ} be the Levy collapse poset for making $\kappa = \omega_1$, where κ is measurable in V. Let $\mathcal{L} \in V^{\mathcal{L}^{\kappa}}$ be a poset which doesn't collapse ω_1 . Then is ω_1 precipitous in $V^{\mathcal{L}^{\kappa+2}}$? We have the following three facts.

(i) A theorem of Kakuda ([6]) is that if \mathcal{I} is a precipitous λ -ideal then in any λ cc forcing extension the ideal \mathcal{I} generated by \mathcal{I} is precipitous. Thus \mathcal{L} may

be any ccc poset, and the precipitousness of ω_1 is compatible with, say, MA & \neg CH.

- (ii) Magidor ([5]) showed that \mathcal{Q} can be a certain interation of length ω_2 which turns the precipitous ideal on ω_1 in $V^{\mathcal{L}^*}$ into the nonstationary ideal, and keeps it precipitous. So $Con(ZFC + there \ is \ a \ measurable \ cardinal)$ implies $Con(ZFC + NS_{\omega_1} \ is \ precipitous)$.
- (iii) If $V = L_U$, U a normal ultrafilter on κ , then the question has a negative answer. Namely, in $(L_U)^{\mathscr{L}^{\kappa}}$ let $\mathscr{Q}_0 = 2^{<\kappa} \cap L_U$ ordered by function extension, and let \mathscr{Q}_1 be the usual poset for mapping ω_1 onto ω_2 with countable conditions. Then in $(L_U)^{\mathscr{L}^{\kappa+\mathscr{Q}_0}}$ and $(L_U)^{\mathscr{L}^{\kappa+\mathscr{Q}_1}}$, ω_1 is not precipitous. These facts are consequences of Kunen's work ([7]) on L_U . Namely, suppose $\mathscr I$ is a precipitous ideal on ω_1 in $L_U[G,H]$, where G is L_u - \mathscr{L}^{κ} -generic and H is either $L_U[G]$ - $\mathscr Q_0$ -generic or $L_U[G]$ - $\mathscr Q_1$ -generic. Let $G_{\mathscr I}$ be a generic ultrafilter over $\mathscr I$, with

$$i: L_U[G,H] \rightarrow (L_U[G,H])^{\kappa}/G_{\mathfrak{I}} = M$$

the canonical embedding. Then $M = L_{iU}[iG, iH]$, where L_{iU} is the unique " $i(\kappa)$ -model" ([7]), i.e. the unique transitive model of ZFC containing all the ordinals satisfying "there is a normal ultrafilter D on $i(\kappa)$ with $V = L_D$ ".

In the case where H is \mathcal{Q}_0 -generic, $M \models \text{``i}H \not\in L_{iU}$ but $iH \cap \alpha \in L_{iU}$ for all $\alpha < i(\kappa)$ ''. Thus $M \models H \in L_{iU}$, since $iH \cap \kappa = H$. Whence $H \in L_{iU}$ by absoluteness of L_{iU} . But $L_U \subseteq L_{iU}$ ([7]), so $H \in L_U$, a contradiction.

If H is \mathcal{Q}_1 -generic, then, since $\mathcal{P}(\kappa) \cap L_U[G,H] \subseteq M$, and since $(\kappa^+)^{L_U} \sim \kappa$ in $L_U[G,H]$, we have $\mathcal{P}((\kappa^+)^{L_U}) \cap L_U \subseteq M$. Thus $U \in M$, so $M \models$ "there is a κ -model". But since all the λ -models are elementarily equivalent ([7]) the least λ -model would have a generic extension in which for some $\lambda' < \lambda$, there is a λ' -model, a contradiction.

Similar arguments produce a counterexample \mathcal{Q} to the above question, when κ is a measurable cardinal in one of the Φ -minimal models of [12] or [13]. We consider the question of the precipitousness of ω_1 in certain $V^{\mathcal{L}^{\kappa+2}}$, where κ is supercompact.

Let $j: V \to M$ be an elementary embedding, M a transitive class, and let \mathcal{P} be a poset. Suppose $G_{j\mathcal{P}}$ is $V-j\mathcal{P}$ -generic, whence $M-j\mathcal{P}$ -generic. Living in $V[G_{j\mathcal{P}}]$, we desire that $j^{-1}(G_{j\mathcal{P}})$ be $V-\mathcal{P}$ -generic and that j be lifted to an elementary embedding $\tilde{j}: V[j^{-1}(G_{j\mathcal{P}})] \to M[G_{j\mathcal{P}}]$.

DEFINITION (See Kunen and Paris ([9]), Silver ([11])). \mathcal{P} has the master condition property for j if the following equivalent conditions hold:

- (i) $\forall p \in \mathscr{P} \exists r \in j\mathscr{P} \ r \geq jp \text{ and } r \Vdash_{j\mathscr{P}} j^{-1}(G_{j\mathscr{P}}) \text{ is } V \mathscr{P} \text{-generic,}$
- (ii) $\Vdash_{\mathscr{P}} j''(G_{\mathscr{P}})$ determines a V-generic set with respect to the subalgebra of $j\mathscr{P}$ generated by $j''\mathscr{P}$.

The r of (i) is a master condition. If M is sufficiently closed then the " $\Vdash_{j\mathscr{P}}$ " of (i) may be taken as forcing over M and the "V-generic" of (ii) may be replaced by "M-generic". To see that (i) implies (ii), take a $p \in \mathscr{P}$ forcing the negation of the statement to be forced in (ii), and apply (i) to get a contradiction. For (ii) implies (i), take a $p \in \mathscr{P}$ contradicting (i) and extend $j''(G_{\mathscr{P}})$ to a generic set on $j\mathscr{P}$.

LEMMA 1 ([9], [11]). If $G_{j\mathscr{P}}$ is $j\mathscr{P}$ -generic, and $G_{\mathscr{P}} = j^{-1}{}''(G_{j\mathscr{P}})$ is \mathscr{P} -generic, then in $V[G_{j\mathscr{P}}]$, j may be extended to an elementary embedding $\tilde{j}:V[G_{\mathscr{P}}]\to M[G_{j\mathscr{P}}]$.

PROOF. If τ is a \mathscr{P} -term, let $\tilde{j}(\operatorname{den}_{G_{\mathscr{P}}}\tau) = \operatorname{den}_{G_{\mathscr{P}}}(j\tau)$. This is well defined since if $p \in G_{\mathscr{P}}$ and $p \Vdash_{\mathscr{P}} \tau = \sigma$ then $jp \in G_{j\mathscr{P}}$ and $jp \Vdash_{j\mathscr{P}} j\tau = j\sigma$; similarly, the embedding is elementary.

REMARKS. If \mathcal{P} has the κ cc, where κ is the critical point of j, then trivially \mathcal{P} has the master condition property for j (take r = jp). Kunen and Paris ([9]) first considered extending elementary embeddings in cases where \mathcal{P} doesn't have the κ cc. Silver ([11]) was the first to utilize a nontrivial master condition. Master conditions in situations where \mathcal{P} collapses κ to a successor cardinal were first used by Kunen ([8]).

LEMMA 2 ([9], [11], [5]). Let κ be the critical point of j and suppose \mathcal{P} has the master condition property for j. In $V[G_{\mathcal{P}}]$ define, for $X \subseteq \kappa$,

$$X \in \mathscr{I} \Leftrightarrow \exists p \in G_{\mathscr{P}} \ jp \Vdash_{j\mathscr{P}} (j^{-1}"(G_{j\mathscr{P}}) \ \text{is} \ V - \mathscr{P} - \text{generic} \Rightarrow \kappa \not\in \tilde{j}X).$$

Then \mathcal{I} is a normal κ -ideal.

PROOF. That $\kappa \not\in \mathcal{I}$ follows from the master condition property. That \mathcal{I} is an ideal is quickly verified. If \mathcal{I} weren't normal, then for some q, \dot{X} and \dot{f} ,

$$q \Vdash_{\mathscr{P}} \dot{X} \in \mathscr{I}^+, \quad \dot{f}(\beta) < \beta \quad \text{(all } \beta \in \dot{X}), \quad \dot{f}^{-1}\{\alpha\} \in \mathscr{I} \quad \text{(all } \alpha < \kappa).$$

Choose an $\alpha < \kappa$ and $s \in j\mathcal{P}$ so that $s \ge jq$ and

$$s \Vdash_{j\mathscr{P}} j^{-1}(G_{j\mathscr{P}})$$
 is $V-\mathscr{P}$ -generic, $\kappa \in \tilde{j}\dot{X}$, and $j\dot{f}(\kappa) = \alpha$.

Take a generic $G_{j\mathscr{P}}$ containing s. Since $q \Vdash_{\mathscr{P}} \{\beta \in \dot{X} : \dot{f}(\beta) = \alpha\} \in \mathscr{I}$, a witness $p \ge q$ for this, as in the definition of \mathscr{I} , may be found with $p \in \dot{I}^{-1}(G_{j\mathscr{P}})$. But this contradicts that $s \in G_{j\mathscr{P}}$.

DEFINITION (Shelah [14], see also [1], [3]). A poset 2 is *proper* if and only if the following equivalent conditions hold:

- (i) $\forall \lambda \ \forall \ \text{stationary} \ \mathcal{G} \subseteq [\lambda]^{n_0} \ \mathcal{G} \ \text{remains stationary in} \ V[G_2],$
- (ii) $\forall \delta > 2^{\text{Card } 2} \ \forall \text{ countable } N < (H_{\delta}, \in, <) \ (< \text{ a well ordering of } H_{\delta}) \text{ with } 2 \in N \ \forall q \in 2 \cap N \ \exists r \geq q \ \forall A \in N \ (A \text{ a maximal antichain of } 2 \Rightarrow r \Vdash G_2 \cap A \in N).$

LEMMA 3. Let $j: V \to M$ have critical point κ , and assume $\Vdash_{\mathscr{L}^*} \mathscr{Q}$ is proper. For $\lambda = 2^{\operatorname{Card} \mathscr{L}^{*\bullet 2}}$, suppose $[M]^{\lambda} \subseteq M$ and $j(\kappa) > \lambda$. Then $\mathscr{L}^{*} * \mathscr{Q}$ has the master condition property for j.

PROOF. Given $(p,\dot{q}) \in \mathcal{L}^{\kappa} * \mathcal{Q}$ we are to find a generic $G_{j(\mathcal{L}^{\kappa} * \mathcal{Q})}$ containing (p,jq) such that $j^{-1}''(G_{j(\mathcal{L}^{\kappa} * \mathcal{Q})})$ is $\mathcal{L}^{\kappa} * \mathcal{Q}$ -generic. First pick a generic $G_{j(\mathcal{L}^{\kappa})}$ containing p. We have the elementary embedding $\tilde{j}: V[G_{2^{\kappa}}] \to M[G_{j2^{\kappa}}]$, where $G_{\mathcal{L}^{\kappa}} = G_{j\mathcal{L}^{\kappa}} \upharpoonright \mathcal{L}^{\kappa}$. In $V[G_{\mathcal{L}^{\kappa}}]$, pick a well ordering < of H_{λ} . Then by closure of $M, N = j''(H_{\lambda}, \in, <) \in M[G_{j\mathcal{L}^{\kappa}}]$; furthermore, $N < j(H_{\lambda}, \in, <)$. We have that $\tilde{j}\mathcal{Q}$ is proper in $M[G_{j\mathcal{L}^{\kappa}}]$, $j\mathcal{Q}$, $jq \in N$ and, since $G_{j\mathcal{L}^{\kappa}}$ is the Levy collapse of $j(\kappa) > \lambda$ to ω_1 , N is countable in $M[G_{j\mathcal{L}^{\kappa}}]$. Thus we may pick $r \geq jq$ as guaranteed by properness of $j\mathcal{Q}$. Then for every maximal antichain A of \mathcal{Q} in $V[G_{\mathcal{L}^{\kappa}}]$, $r \Vdash_{j\mathcal{Q}} G_{j\mathcal{Q}} \cap jA \in N$, whence $r \Vdash_{j\mathcal{Q}} j^{-1}(G_{j\mathcal{Q}})$ is $V[G_{\mathcal{L}^{\kappa}}] - \mathcal{Q}$ -generic, completing the proof.

For a poset \mathcal{P} , Mitchell's method, if it applies, for getting a precipitous ideal on κ in $V[G_{\mathcal{P}}]$, is to extend the embedding

$$i: V \rightarrow V^{\kappa}/U = M$$

given by a normal ultrafilter U on κ in V, to

$$\tilde{i}:V[G_{\mathscr{P}}]\to M[G_{i\mathscr{P}}],$$

obtaining a κ -ideal \mathcal{I} in $V[G_{\mathcal{F}}]$, and then to argue that

$$(V[G_{\mathcal{P}}])^{\kappa}/G_{\mathcal{F}}\cong M[G_{i\mathcal{P}}]$$

whence $(V[G_{\mathscr{F}}])^{\kappa}/G_{\mathscr{F}}$ is well founded. In the arguments of Magidor ([5], the result that NS_{ω_1} can be precipitous) and Baumgartner and Taylor ([2], starting with κ being precipitous rather than measurable) an isomorphism of this sort proves precipitousness.

However, when $\mathscr{P}=\mathscr{L}^{\kappa}*\mathscr{Q}$, \mathscr{Q} proper in $V[G_{\mathscr{L}^{\kappa}}]$, \mathscr{Q} 's largeness may force us to use a supercompact embedding j and Lemmas 1 and 3 to get a $j:V[G_{\mathscr{L}^{\kappa_*}}]\to M[G_{j(\mathscr{L}^{\kappa_*}}]$. What may then be established by Mitchell's method is that if κ is supercompact then for sufficiently large λ there is a precipitous ideal on $[\lambda]^{\kappa_0}$ in $V[G_{\mathscr{L}^{\kappa_*}}]$. But for $\lambda=\kappa$, the isomorphism, which would

guarantee the precipitousness of the κ -ideal \mathcal{I} defined as in Lemma 2, does not hold. In this paper we prove that sometimes \mathcal{I} is precipitous anyway.

An improved statement of Lemma 3 is

LEMMA 4. Let $j: V \to M$ have critical point κ , and assume $\Vdash_{\mathscr{L}^*} \mathscr{Q}_0$ is proper, $\Vdash_{\mathscr{L}^{**}\mathscr{Q}_0} \mathscr{Q}_1$ is proper. For $\lambda = 2^{\operatorname{Card}(\mathscr{L}^{***}\mathscr{Q}_0^{**}\mathscr{Q}_1)}$, suppose $M^{\lambda} \subseteq M$ and $j(\kappa) > \lambda$. Let $G_{j(\mathscr{L}^{**}\mathscr{Q}_0)}$ be $j(\mathscr{L}^{*} * \mathscr{Q}_0)$ -generic with $j^{-1}''(G_{j(\mathscr{L}^{**}\mathscr{Q}_0)}) = G_{\mathscr{L}^{**}\mathscr{Q}_0}$ being $(\mathscr{L}^{*} * \mathscr{Q}_0)$ -generic (Lemma 3). Let $\dot{q}_1 \in \mathscr{Q}_1$. Then $G_{j(\mathscr{L}^{**}\mathscr{Q}_0)} \cup \{j\dot{q}_1\}$ may be extended to a $j(\mathscr{L}^{\kappa} * \mathscr{Q}_0 * \mathscr{Q}_1)$ -generic $G_{j(\mathscr{L}^{**}\mathscr{Q}_0 * \mathscr{Q}_1)}$ so that $j^{-1}''(G_{j(\mathscr{L}^{**}\mathscr{Q}_0 * \mathscr{Q}_1)})$ is $(\mathscr{L}^{\kappa} * \mathscr{Q}_0 * \mathscr{Q}_1)$ -generic.

PROOF. As in Lemma 3. Let

$$\tilde{j}: V[G_{\mathscr{L}^{\kappa_*} \mathscr{Q}_0}] \to M[G_{j(\mathscr{L}^{\kappa_*} \mathscr{Q}_0)}]$$

be the canonical elementary embedding. In $V[G_{\mathscr{L}^{\kappa_*}2_0}]$, pick a well ordering < of H_{λ} . Then $N = j''(H_{\lambda}, \in, <)$ is, in $M[G_{j(\mathscr{L}^{\kappa_*}2_0)}]$, a countable elementary substructure of $j(H_{\lambda}, \in, <)$ containing $\tilde{j}(2_1)$. So a master condition in $\tilde{j}2_1$ (extending jq_1) exists as in Lemma 3.

Say that a poset \mathcal{R} is strongly generated by \aleph_1 antichains if there are antichains A_{α} of \mathcal{R} ($\alpha < \omega_1$) with $\bigcup_{\alpha < \omega_1} A_{\alpha}$ cofinal in \mathcal{R} . Let \mathcal{A} be the class of posets \mathcal{Q} such that

- (i) 2 is proper.
- (ii) If B_{α} ($\alpha < \omega_1$) are antichains of \mathcal{Q} then \mathcal{Q} may be written as $\mathcal{R} * \mathcal{G}$, with $\mathcal{G}/G_{\mathcal{R}}$ proper, with each $B_{\alpha} \subseteq \mathcal{R}$, and with \mathcal{R} strongly generated by \aleph_1 antichains.

 \mathcal{A} is the collection of proper posets which will be shown below to preserve the precipitousness of ω_1 over $V[G_{\mathcal{L}^{\kappa}}]$, κ supercompact. However, some improper posets are also known to preserve precipitousness:

- (a) Magidor's poset $\mathcal{Q} \in V[G_{\mathcal{L}^{\kappa}}]$, κ measurable, such that NS_{ω_1} is precipitous in $V[G_{\mathcal{L}^{\kappa_2}}]$, is not proper.
- (b) If κ is indestructibly supercompact ([10]), then in $V[G_{\mathscr{L}^{\kappa}}]$, while $\mathscr{Q} = 2^{\kappa} \cap V$ is not proper, ω_1 remains precipitous upon forcing with \mathscr{Q} (or in fact any $\mathscr{Q}' \in V$, \mathscr{Q}' κ -directed closed in V).

 \mathscr{A} contains the ccc posets and the poset of countable conditions for blowing up 2^{ω_1} to a cardinal γ (these only require κ measurable to get precipitousness), proper posets of size \aleph_1 , the poset for mapping ω_1 onto γ with countable conditions, and length ω_2 , countable support, \aleph_2 -cc, proper iterations such that each stage before ω_2 has a dense subset of size $\leq \aleph_1$. We prove that another type of poset is in \mathscr{A} , by giving an example.

Shelah ([14]) proved that a countable support iteration of proper forcings is

proper, thus obtaining versions of MA for proper forcings. Baumgartner ([1]) iterated proper forcings in a certain way δ times for a supercompact δ , concluding the consistency, from Shelah's methods, of

PFA: If \mathcal{R} is proper and D_{α} is cofinal in \mathcal{R} ($\alpha < \omega_1$) then there is an \mathcal{R} - $\{D_{\alpha} : \alpha < \omega_1\}$ -generic set.

Proper iterations of long length will be in \mathcal{A} if enough cardinals are collapsed along the way. Let us check

LEMMA 5. The standard posets 2 for making PFA true are in A.

PROOF. \mathscr{Q} is a certain length δ , δ cc iteration with countable supports (δ supercompact) of proper posets. The \mathscr{Q} 's ([1], [14]) which have been used for PFA satisfy that for cofinally many inaccessible $\alpha < \delta$, the poset \mathscr{Q}_{α} giving the first α steps of the iteration has α -cc and cardinality α , and $\mathscr{Q}_{\alpha+1} = \mathscr{Q}_{\alpha} * \mathscr{L}_{\alpha}$, where \mathscr{L}_{α} is the Levy poset for mapping ω_1 onto α . Suppose that B_{β} ($\beta < \omega_1$) are antichains of \mathscr{Q} . Pick $\alpha < \delta$ as above with each $B_{\beta} \subseteq \mathscr{Q}_{\alpha}$. Let $\mathscr{R} = \mathscr{Q}_{\alpha+1}$. Then $\mathscr{Q}/G_{\mathscr{R}}$ is proper ([14]). The conditions on α above imply that Card $\mathscr{R} = \alpha$. Enumerate \mathscr{R} as $\{r_{\sigma} : \sigma < \alpha\}$. Let $g : \omega_1 \to \alpha$ be the generic map given by \mathscr{L}_{α} . For each $\beta < \omega_1$ let A_{β} be a maximal antichain of \mathscr{R} such that for each $\sigma < \alpha$, if r_{σ} is compatible with $[\dot{g}(\beta) = \sigma]$ then some extension of r_{σ} , $[\dot{g}(\beta) = \sigma]$ is in A_{β} . Then $\bigcup_{\beta < \omega_1} A_{\beta}$ is cofinal in \mathscr{R} , since for each $\sigma < \alpha$, r_{σ} is compatible with $[\dot{g}(\beta) = \sigma]$ for some β . Thus \mathscr{R} is strongly generated by \aleph_1 antichains.

LEMMA 6. If $\Vdash_{\mathscr{L}^{\kappa}} \mathscr{R}$ is strongly generated by \aleph_1 antichains then $\mathscr{L}^{\kappa} * \mathscr{R}$ is strongly generated by κ antichains.

PROOF. If $\Vdash \bigcup_{\alpha < \kappa} \dot{A}_{\alpha}$ is cofinal in $\dot{\mathcal{R}}$, with $\dot{A}_{\alpha} = \{\dot{a}_{\alpha\gamma} : \gamma < \sigma_{\alpha}\}$ an enumeration without repetitions, then $\bigcup_{\alpha < \kappa, p \in \mathscr{L}^{\kappa}} \{(p, \dot{a}_{\alpha\gamma}) : \gamma < \sigma_{\alpha}\}$ is cofinal in $\mathscr{L}^{\kappa} * \dot{\mathcal{R}}$.

THEOREM. Suppose κ is supercompact and $\Vdash_{\mathscr{L}^{\kappa}} \dot{\mathscr{Q}} \in \mathscr{A}$. Then in $V[G_{\mathscr{L}^{\kappa} * \mathscr{Q}}]$, ω_1 is precipitous.

PROOF. Let $G = G_{\mathscr{L}^* \cdot 2}$; we show the ideal \mathscr{I} obtained from G and a sufficiently closed supercompact embedding j (Lemmas 1-3) is precipitous. Using the second game theoretic version of precipitousness in the introduction, player II must respond to an (X, f) $(X \in \mathscr{I}^+)$ and $f: X \to \operatorname{Ord}$ with a $Y \subseteq X$, $Y \in \mathscr{I}^+$.

Player II picks a term, (\dot{X}, \dot{f}) for (X, f) and a decomposition $\mathcal{Q} = \mathcal{R} * \mathcal{G}$ as in property \mathcal{A} for the maximal antichains needed to decide \dot{X} and \dot{f} . Thus $(X, f) \in V[G_{\mathcal{L}^{\kappa_*, \mathfrak{R}}}]$, $\Vdash_{\mathcal{L}^{\kappa_*, \mathfrak{R}}} \mathcal{G}$ is proper, and $\Vdash_{\mathcal{L}^{\kappa}} \mathcal{R}$ is strongly generated by \aleph_1

antichains, whence by Lemma 6, $\mathcal{L}^* * \mathcal{R}$ is strongly generated by maximal antichains $\{A_{\alpha} : \alpha < \kappa\}$.

If $\Vdash_{\mathscr{C}} \dot{h} : \dot{X} \to \text{Ord}$ and \mathscr{B} is a complete subalgebra of \mathscr{C} , and $G_{\mathscr{B}}$ is \mathscr{B} -generic then, assuming $[\![\alpha \in \dot{X}]\!]_{\mathscr{C}/G_{\mathscr{B}}} > 0$, let

 $\mu(\dot{h}, \alpha, G_{\mathfrak{B}})$ = the least ordinal θ such that for some $c \in \mathscr{C}/G_{\mathfrak{B}}$, $c \Vdash \dot{h}(\alpha) = \theta$.

For $\alpha < \kappa$ let \mathcal{B}_{α} be the complete subalgebra of $\mathcal{L}^{\kappa} * \mathcal{R}$ generated by $\bigcup_{\beta < \alpha} A_{\beta}$, and let $G_{\mathcal{B}_{\alpha}} = G \cap \mathcal{B}_{\alpha}$. Then player II plays

$$Y = \{\alpha \in X : f(\alpha) = \mu(\dot{f}, \alpha, G_{\Re_{\alpha}})\}.$$

We show that $Y \in \mathcal{I}^+$ and that player II's strategy guarantees that I will have no legal move after some finite number of plays.

In M, let $\mathcal{B}_{j^*(\mathcal{L}^{\kappa} * \mathcal{R})}$ and $\mathcal{B}_{j^*(\mathcal{L}^{\kappa} * \mathcal{Q})}$ be the complete subalgebras of $j(\mathcal{L}^{\kappa} * \mathcal{Q})$ generated by $j''(\mathcal{L}^{\kappa} * \mathcal{R})$ and $j''(\mathcal{L}^{\kappa} * \mathcal{Q})$, respectively. If H is $j(\mathcal{L}^{\kappa} * \mathcal{Q})$ -generic, define in M[H]

$$\theta_0 = \mu(j\dot{f}, \kappa, H \upharpoonright \mathcal{B}_{j''(\mathcal{L}^{\kappa_*}2)}),$$

$$\theta_1 = \mu(j\dot{f}, \kappa, H \upharpoonright \mathcal{B}_{j''(\mathcal{L}^{\kappa_*}\Re)}),$$

$$\theta_2 = \mu(j\dot{f}, \kappa, H \upharpoonright \mathcal{B}_{\kappa}),$$

where

$$\mathcal{B}_{\kappa} = (j\langle \mathcal{B}_{\alpha} : \alpha < \kappa \rangle)(\kappa).$$

Note that since $X \in \mathcal{I}^+$, θ_0 , θ_1 and θ_2 exist whenever $j^{-1}''(H)$ is $(\mathcal{L}^{\kappa} * \mathcal{Q})$ -generic, and that they are unchanged by replacing the term \dot{f} by an \dot{f}' with the same denotation in $V[j^{-1}''(H)]$.

LEMMA 7. Let H be $j(\mathcal{L}^{\kappa} * 2)$ -generic and assume $j^{-1}(H)$ is $\mathcal{L}^{\kappa} * 2$ -generic. Then in M[H], $\theta_0 = \theta_1 = \theta_2$.

PROOF. $\theta_0 = \theta_1$. Assuming that $j^{-1n}(H)$ is $(\mathcal{L}^{\kappa} * \mathcal{Q})$ -generic, the sets $H \upharpoonright \mathcal{B}_{j^{*}(\mathcal{L}^{\kappa} * \mathcal{Q})}$ and $H \upharpoonright \mathcal{B}_{j^{*}(\mathcal{L}^{\kappa} * \mathcal{R})}$ (and hence the values of θ_0 , θ_1 , respectively) are generated by their j inverse images, which are $(\mathcal{L}^{\kappa} * \mathcal{Q})$ - and $(\mathcal{L}^{\kappa} * \mathcal{R})$ -generic, respectively. So we may assume for a contradiction that there is a $(p, \dot{s}) \in (\mathcal{L}^{\kappa} * \mathcal{R}) * \mathcal{S}$ so that

$$j(p, \dot{s}) \Vdash_{j(\mathscr{L}^{\kappa} * 2)}$$
 "if j^{-1} "(H) is $(\mathscr{L}^{\kappa} * 2)$ -generic, then $\theta_0 \neq \theta_1$ ".

Since $j\dot{f}(\kappa)$ is determined by forcing over $j(\mathcal{L}^{\kappa} * \mathcal{R})$, pick a generic $G_{(\mathcal{K}^{\kappa} * \mathcal{R})}$ containing p and extend $j''(G_{\mathcal{L}^{\kappa} * \mathcal{R}})$ to a generic $H_{j(\mathcal{L}^{\kappa} * \mathcal{R})}$ containing an h forcing

that $j\dot{f}(\kappa) = \theta_1$. Now using Lemma 4, extend $H_{j(\mathscr{L}^{\kappa} \cdot \mathscr{R})}$ to a $j(\mathscr{L}^{\kappa} * \mathscr{Q})$ -generic H containing $j\dot{s}$ so that $j^{-1}(H)$ is $\mathscr{L}^{\kappa} * \mathscr{Q}$ -generic. But now M[H] satisfies $\theta_0 = \theta_1$.

 $\theta_1 = \theta_2$. Suppose $j^{-1"}(H_{j(\mathscr{L}^{\kappa} \cdot \mathscr{R})}) = G_{\mathscr{L}^{\kappa} \cdot \mathscr{R}}$ is $(\mathscr{L}^{\kappa} * \mathscr{R})$ -generic. We claim that the set $\bigcup_{\alpha < \kappa} j''(G_{\mathscr{L}^{\kappa} \cdot \mathscr{R}} \cap A_{\alpha})$ is a subset of \mathscr{B}_{κ} and $\mathscr{B}_{j''(\mathscr{L}^{\kappa} \cdot \mathscr{R})}$, and generates $H \upharpoonright \mathscr{B}_{\kappa}$ and $H \upharpoonright \mathscr{B}_{j''(\mathscr{L}^{\kappa} \cdot \mathscr{R})}$. Since \mathscr{B}_{κ} is generated by the antichains jA_{α} ($\alpha < \kappa$), $\bigcup_{\alpha < \kappa} j''(G_{\mathscr{L}^{\kappa} \cdot \mathscr{R}} \cap A_{\alpha})$ generates $H \upharpoonright \mathscr{B}_{\kappa}$. As $\bigcup_{\alpha < \kappa} A_{\alpha}$ is cofinal in $\mathscr{L}^{\kappa} * \mathscr{R}$, it follows that $\bigcup_{\alpha < \kappa} (G_{\mathscr{L}^{\kappa} \cdot \mathscr{R}} \cap A_{\alpha})$ is cofinal in $G_{\mathscr{L}^{\kappa} \cdot \mathscr{R}}$. Hence $\bigcup_{\alpha < \kappa} j''(G_{\mathscr{L}^{\kappa} \cdot \mathscr{R}} \cap A_{\alpha})$ is cofinal in $j''(G_{\mathscr{L}^{\kappa} \cdot \mathscr{R}})$, whence generates, since $j''(G_{\mathscr{L}^{\kappa} \cdot \mathscr{R}})$ generates, $H \upharpoonright \mathscr{B}_{\kappa}$. Note that we needed $\bigcup_{\alpha < \kappa} (G_{\mathscr{L}^{\kappa} \cdot \mathscr{R}} \cap A_{\alpha})$ to be cofinal in, rather than just generate, $G_{\mathscr{L}^{\kappa} \cdot \mathscr{R}}$, to reach the conclusion that $H \upharpoonright \mathscr{B}_{\kappa}$ is generated by applying j. The claim yields $\theta_1 = \theta_2$.

Given X, f, Y as above, let θ_f be the $\theta_0 = \theta_1 = \theta_2$ of Lemma 7.

LEMMA 8. Let G be $(\mathcal{L}^* * 2)$ -generic, $Y \in V[G]$ defined from (X, f) as above. Then $Y \in \mathcal{I}^+$, and if $j''(G) \subseteq H$, H generic over $j(\mathcal{L}^* * 2)$, then

$$M[H] \models (\kappa \in \tilde{j}Y \Leftrightarrow \tilde{j}\dot{f}(\kappa) = \theta_f).$$

PROOF. In M[j''G] there is by definition a condition in $j(\mathcal{L}^{\kappa} * G)/j''(G)$ which forces $(\tilde{j}f)(\kappa) = \theta_0$, hence that $(\tilde{j}f)(\kappa) = \theta_2$, which is the definition of $\kappa \in \tilde{j}Y$.

To finish the theorem, suppose in $V[G_{\mathscr{L}^{r_{*2}}}]$ the game

I
$$(X_0, f_0)$$
 (X_1, f_1)
II Y_0 Y_1 \cdots

continues for ω moves, with II playing his strategy. Live in V[H], some H generic over $j(\mathcal{L}^{\kappa}*\mathcal{Q})$ with $j^{-1}{}^{n}H = G_{\mathcal{L}^{\kappa}*\mathcal{Q}}$, where the embedding $\tilde{j}:V[G_{\mathcal{L}^{\kappa}*\mathcal{Q}}] \to M[H]$ is defined. Since each $X_{n} \in \mathcal{J}^{+}$, $\theta_{f_{n}}$ exists for each n. We claim that $\theta_{f_{n}} > \theta_{f_{n+1}}$. Namely, pick a condition s in $j(\mathcal{L}^{\kappa}*\mathcal{Q})/j''(G_{\mathcal{L}^{\kappa}*\mathcal{Q}})$ forcing that $\kappa \in \tilde{j}Y_{n+1}$. Then s forces that $\kappa \in \tilde{j}Y_{n}$, and that $\theta_{f_{n}} = \tilde{j}f_{n}(\kappa) < \tilde{j}f_{n+1}(\kappa) = \theta_{f_{n+1}}$. This contradiction completes the proof.

COROLLARY. Con(ZFC + there exist two supercompact cardinals) implies $Con(ZFC + PFA + \omega_1)$ is precipitous).

We give an example of a partial ordering \mathscr{P} in $V[G_{\mathscr{L}^*}]$ such that in $V[G_{\mathscr{L}^*}]$ the master condition ideal of Lemma 2 is not precipitous. Let \mathscr{Q} be the usual partial ordering for adding a $g \in (\omega_1)^{\omega_1}$ which eventually dominates each ground model $h \in (\omega_1)^{\omega_1}$. For $A \subseteq \omega_2$ let \mathscr{Q}_A be the side by side product, with countable supports, of A copies of \mathscr{Q} .

Theorem. In $V[G_{\mathscr{L}^{\kappa_*} \circ_{\omega_2}}]$ let \mathscr{I} be the ideal defined as in Lemma 2 with respect to a sufficiently closed elementary embedding $j:V \to M$ with critical point κ . Then \mathscr{I} is not precipitous.

PROOF. For $\beta < \kappa^+ = \omega_2^{V[G_{2^{\kappa}}]}$, let g_{β} be the dominating function added by the β th copy of \mathcal{Q} . Let $\mathcal{R} = \mathcal{L}^{\kappa} * \mathcal{Q}_{\omega_2}$.

LEMMA 1. For each $r \in \mathcal{R}$ and \dot{X} such that $r \Vdash \dot{X} \in \mathcal{I}^+$, each $\beta < \kappa^+$, and each $\theta < j\kappa$, jr may be extended in $j\mathcal{R}$ to force that $j^{-1}''(G_{j\mathcal{R}})$ is \mathcal{R} -generic, $\kappa \in \tilde{j}\dot{X}$, and $\tilde{j}g_{\beta}(\kappa) \geq \theta$.

PROOF. Let $r, \dot{X}, \beta, \theta$ be a counterexample. For some $A \in [\kappa^+]^{\kappa}, \dot{X} \in V^{\mathscr{L}^{\kappa_*}^{2}_{\Lambda}}$. By the automorphism properties of \mathscr{Q}_{ω_2} we may assume that $\beta = 0$ and $A = \kappa$. Denote $j \upharpoonright V_{\kappa+3}$ by \hat{j} . Then M satisfies

 $\hat{j}: V_{\kappa+3} \to V_{j\kappa+3}$ is an elementary embedding, and \hat{jr} , $[\hat{j}^{-1}](G_{j\Re})$ is \mathcal{R} -generic], and $[\kappa \in jX]$ are mutually compatible and their conjunction forces that $\hat{jg}_0(\kappa) < \theta$.

For α inaccessible $< \kappa$, let $\mathcal{R}_{\alpha} = \mathcal{L}^{\alpha} * \mathcal{Q}_{\alpha^{+}}$. Then for a *j*-measure one set of α 's there exist $\theta_{\alpha} < \kappa$ and j_{α} so that

 $\hat{j}_{\alpha}: V_{\alpha+3} \to V_{\kappa+3}$ is an elementary embedding and r, $[\![j_{\alpha}^{-1}]^{n}(G_{\Re})$ is \mathcal{R}_{α} -generic and $[\![\alpha \in \dot{X}]\!]$ are mutually compatible and their conjunction forces that $g_{0}(\alpha) < \theta_{\alpha}$.

Let $j_{\kappa} = j\langle j_{\alpha} : \alpha < \kappa \rangle(\kappa)$ and $\theta_{\kappa} = j\langle \theta_{\alpha} : \alpha < \kappa \rangle(\kappa)$. Again, M satisfies

 $j_{\kappa}: V_{\kappa+3} \to V_{j\kappa+3}$ is an elementary embedding, and jr, $[\![j_{\kappa}^{-1}]''(G_{j\Re})$ is \Re -generic and $[\![\kappa \in j\dot{X}]\!]$ are mutually compatible and their conjunction forces that $\tilde{j}g_0(\kappa) < \theta_{\kappa}$.

CLAIM. If G is \mathcal{R} -generic then j''(G) may be extended to a $j\mathcal{R}$ -generic $G_{j\mathcal{R}}$ such that $[\![\kappa \in j\dot{X}]\!] \in G_{j\mathcal{R}}$ and such that $j_{\kappa}^{-1}(G_{j\mathcal{R}})$ is \mathcal{R} -generic.

PROOF. First note that for each $f \in (\kappa)^{\kappa} \cap V$ there is an $h \in (\kappa)^{\kappa} \cap V$ such that $j_{\kappa}f(\gamma) < jh(\gamma)$ for all $\gamma < j(\tilde{\kappa})$. Namely, for each $\alpha < \kappa$ choose $h(\alpha)$ greater than $f(\alpha)$ and greater than $[j_{\beta}(f \upharpoonright \beta)](\alpha)$ for each $\beta \leq \alpha$. This fact yields that if I is $j(\mathcal{L}^{\kappa} * \mathcal{Q})$ -generic and $j^{-1}(I)$ is $(\mathcal{L}^{\kappa} * \mathcal{Q})$ -generic then $j_{\kappa}^{-1}(I)$ is $(\mathcal{L}^{\kappa} * \mathcal{Q})$ -generic.

If the claim were false, an $r \in \mathcal{R}$ would force its falsity, where we write $r = (l, q_0, q_1) \in \mathcal{L}^{\kappa} * (\mathcal{L}_{\kappa} \times \mathcal{L}_{\kappa^{+}-\kappa})$. Pick an H containing $j(l, q_0)$, generic over $j(\mathcal{L}^{\kappa} * \mathcal{L}_{\kappa})$, such that $j^{-1n}(H)$ is $(\mathcal{L}^{\kappa} * \mathcal{L}_{\kappa})$ -generic and such that $[\kappa \in jX] \in H$.

We have that $j^{-1n}(H) \in V[G_{j(\mathscr{L}^n)}]$; living in $V[G_{j(\mathscr{L}^n)}]$, extend $j^{-1n}(H)$ to a J which is $(\mathscr{L}^\kappa * \mathscr{Q}_{j''(\kappa^+) \cup j'_{\kappa}(\kappa^+)})$ -generic. For each $(l,q) \in J$, replace each demand in q of the form "the $j(\alpha)$ th dominating function dominates $f \in (\kappa)^\kappa$ beyond $\theta < \kappa$ " by "the $j(\alpha)$ th dominating function dominates jf beyond θ ", to obtain a subset \overline{J} of the poset $(j\mathscr{L}^\kappa * \mathscr{Q}_{j''(\kappa^+) \cup j'_{\kappa}(\kappa^+)})$. Assume J was chosen so that $q_1 \in j^{-1n}(\overline{J})$. We have that $j^{-1n}(H) \subseteq j^{-1n}(J)$, that $j^{-1n}(\overline{J})$ is \mathscr{R} -generic, and as in the preceding paragraph, that $j^{-1n}(G)$ (downwards closure of \overline{J}) is \mathscr{R} -generic. In $V[G_{j(\mathscr{L}^\kappa)}]$, let d be the conjunction of $\overline{J} \upharpoonright \mathscr{Q}_{j(\kappa^+)}$. Then, since $j(\kappa) = j_\kappa(\kappa)$, $d \upharpoonright \mathscr{Q}_{j(\kappa)}$ is the conjunction of $H \upharpoonright \mathscr{Q}_{j(\kappa)}$. Thus $H \cup \{d\}$ may be extended to a $j\mathscr{R}$ -generic set. This establishes the claim.

Pick $G_{j\Re}$ as in the claim. Then in $M[G_{j\Re}]$, $j^{-1}''(G_{j\Re})$ is \Re -generic and $\tilde{j}g_0(\kappa) < \theta_{\kappa}$. But for some $\alpha_0 < \kappa$ and all $\alpha > \alpha_0$ so that θ_{α} exists, $g_0(\alpha) > \theta_{\alpha}$. By elementarity, $\tilde{j}g_0(\kappa) > \theta_{\kappa}$. This contradiction establishes Lemma 1.

LEMMA 2. Suppose $X \in \mathcal{I}^+$, $\sigma < \kappa^+$. Then for some $\beta < \kappa^+$,

$$\{\alpha \in X : g_{\beta}(\alpha) < g_{\sigma}(\alpha)\} \in \mathcal{I}^+.$$

PROOF. Suppose $r \in \mathcal{R}$ forces that $\langle \dot{X}, \sigma \rangle$ is a counterexample. Pick $\beta > \sigma$ so that $\dot{X} \in V^{\mathcal{F}^{\kappa_2}\mathcal{F}_{\kappa}}$. Let $G_{\mathfrak{R}}$ be \mathcal{R} -generic with $r \in G_{\mathfrak{R}}$. Let $\theta = \sup\{jf(\kappa): f \in (\kappa)^{\kappa} \cap V\}$. Then $\theta < j(\kappa)$ and if H is any $j(\mathcal{L}^{\kappa} * \mathcal{L}_{\beta})$ -generic set compatible with $j''(G_{\mathfrak{R}})$, the condition $[g_{j\beta}(\kappa) = \theta]$ is a nonzero member of $j\mathcal{R}/H \cup j''(G_{\mathfrak{R}})$. Since $\dot{X} \in V^{\mathcal{F}^{\kappa_*}\mathcal{F}_{\beta}}$ there is, by Lemma 1, an H as above with $[\tilde{j}g_{\sigma}(\kappa) > \theta] \in H$. Pick a $j\mathcal{R}$ -generic $G_{j\mathcal{R}} \supseteq H \cup \{j''(G_{\mathfrak{R}})\} \cup [\tilde{j}g_{\beta}(\kappa) = \theta]$; then $G_{j\mathcal{R}}$ witnesses that $\{\alpha \in X : g_{\beta}(\alpha) < g_{\sigma}(\alpha)\} \in \mathcal{F}^+$.

Lemma 2 gives player II a strategy in the game

I
$$X_0$$
 X_1 \dots $\left(X_n \supseteq Y_n \supseteq X_{n+1} \in \mathscr{I}^+\right)$
II (Y_0, f_0) (Y_1, f_1) \dots $\left(f_{n+1} <_{Y_{n+1}} f_n\right)$

guaranteeing that the game does not terminate at some finite stage (player II picks each f_n from $\{g_\beta : \beta < \kappa^+\}$ so that each $Y_{n+1} = \{\alpha \in X_{n+1} : f_{n+1}(\alpha) < f_n(\alpha)\}$ is in \mathcal{I}^+). Thus \mathcal{I} is not precipitous.

REFERENCES

- 1. J. Baumgartner, Applications of the proper forcing axiom, to appear.
- 2. J. Baumgartner and A. Taylor, Saturation properties of ideals in generic extensions II, Trans. Am. Math. Soc. 271 (1982), 587-609.
 - 3. K. J. Devlin, A Yorkshireman's guide to proper forcing, to appear.
 - 4. F. Galvin, T. Jech and M. Magidor, An ideal game, J. Symb. Logic 43 (1978), 284-292.

- 5. T. Jech, M. Magidor, W. Mitchell and K. Prikry, *Precipitous ideals*, J. Symb. Logic 45 (1980), 1-8.
- 6. Y. Kakuda, On a condition for Cohen extensions which preserves precipitous ideals, J. Symb. Logic 46 (1981), 296-300.
- 7. K. Kunen, Some applications of iterated ultrapowers in set theory, Ann. Math. Logic 1 (1970), 179-277.
 - 8. K. Kunen, Saturated ideals, J. Symb. Logic 43 (1978), 65-76.
- 9. K. Kunen and J. Paris, Boolean extensions and measurable cardinals, Ann. Math. Logic 2 (1971), 359-377.
- 10. R. Laver, Making the supercompactness of κ indestructible under κ -directed closed forcing, Isr. J. Math. 29 (1978), 385–388.
- 11. T. Menas, Consistency results concerning supercompactness, Trans. Am. Math. Soc. 223 (1976), 61-91.
 - 12. W. Mitchell, Sets constructible from sequences of ultrafilters, J. Symb. Logic 39 (1974), 57-66.
- 13. W. Mitchell, *Hypermeasurable cardinals*, Logic Colloquium '78, North-Holland, 1979, pp. 303-316.
 - 14. S. Shelah, Proper forcing, Lecture Notes in Mathematics 940, Springer-Verlag, 1982.
- 15. R. M. Solovay, Real valued measurable cardinals, Proc. AMS Symposia XIII, Volume 1, Providence, 1971, pp. 397-428.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF COLORADO BOULDER, CO 80309 USA